Design of Fully-Integrated RF Front-End Receiver for Large Image Rejection

Fayrouz HADDAD,
W. Rahajandraibe, L. Zaïd, O. Frioui

15/12/2010
• Introduction
• Front-End Receiver Architecture
• Building Blocks Design
 • Polyphase Filters
 • Double-Quadrature Mixer
• Image Rejection Front-End Results
• Conclusion
Introduction

- Evolution of the wireless communications
 - Growth of standards, customer needs
 - Design of complex electronic devices:
 - Multi-standards
 - Multi-functions (voice, internet, GPS, etc.)

- Efforts on IC design & implementation
 - Constraints:
 - High integration, low-cost, low-power
 - Challenges in analog part of RF transceivers:
 - Process high frequency signals
 - Choose the scaled technology (CMOS)
Front-End Architecture

- Double quadrature front-end receiver architecture
 - Better image rejection performance (*comparing to the low-IF one*)
 - Including circuits for magnitude matching balance

```
RF tunable PPF

Switch mixers

IF PPF

Buffer

OTA

IF1

I

RF

x4

Frequency control

LOQ

Q

LO1

Quadrature LO

differential path
```
Building Blocks Design

- **Polyphase Filters** (used in RF & IF sections)
 - Accurate I/Q signals generation
 - High Image Rejection Ratio (IRR)
Building Blocks Design

- **Image rejection problem**

- **Solution: Image reject Filter (Polyphase filters)**
Polyphase Filter

Principle

• Pole frequency (notch) :

\[f_p = \frac{1}{2\pi RC} \]
Design constraints

- **Process tolerance & Components mismatch**
 - Components with large surface: decrease the mismatch, but increase the parasitics.
 - Tradeoff among chip area, IRR and freq.
 - Statistical study of the IRR distribution
 - **Choice**: PPF with 4 stages (RF & IF)

- **Careful attention to layout matching**
 - Optimal sizing (components & connexions)
 - Conserve the circuit symmetry
 - Balance the I/Q paths parasitics
 - Characterize the interconnexion network
Polyphase Filter

- **Tuning feature**
 - RC basic passive polyphase network + MOS resistors
 - Frequency control (by tuning V_G): $f_p = \frac{1 + RK \frac{W}{L} (V_G - V_T)}{2\pi RC}$
 - Bandwidth centered at 2.4GHz (can be tuned by 300MHz)

![Diagram of Polyphase Filter](image)

PLS results

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>IRR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1E9</td>
<td>-70</td>
</tr>
<tr>
<td>2E9</td>
<td>-65</td>
</tr>
<tr>
<td>3E9</td>
<td>-60</td>
</tr>
<tr>
<td>4E9</td>
<td>-55</td>
</tr>
<tr>
<td>5E9</td>
<td>-50</td>
</tr>
</tbody>
</table>

IRR \approx 73dB

130nm CMOS technology

(192 x 97 µm²)

Im2NP

Institut Matériaux Microélectronique Nanosciences de Provence
UMR 6242 CNRS, Universités Paul Cézanne, Provence et Sud Toulon-Var
Building Blocks Design

- **Double-Quadrature down-converter**
 - Both LO and RF inputs applied in quadrature

![Diagram of Double-Quadrature down-converter]
Double-Quadrature Mixer

- **Switch mixer**
 - Large IRR, low-power, high linearity
 - Four MOS transistors operating in the linear region (R_{on})

- **OTA** (*Folded-cascode common-mode feedback*)
 - High voltage gain

- **Resistive feedback**
 - Magnitude matching depends on R.
 - Adjusting resistors corrects the magnitude mismatch

$$V_{IF-I+} = V_{RF-I+} \cdot \sin(\omega_{IF-I+}t) \frac{R_{2a}}{R_{1a} + R_{on}}$$
Image-Rejection Front-End Results

- Implemented in 130nm CMOS technology

Total image rejection results (with PLS scheme)

\[
\begin{array}{c|c}
\text{IF band: [5, 9]MHz} & \\
\text{IRR} & \approx 61\text{dB}
\end{array}
\]
Image-Rejection Front-End Results

- **Magnitude mismatch impact on the IRR**

- Uniform image rejection in the IF band
- Great immunity of the chain to different magnitude mismatches

\[\Delta IRR < 2.5\text{dB around 61dB} \]
(for \(\Delta A < 20\% \))
Image-Rejection Front-End Results

Comparison with previous works

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CMOS Process</td>
<td>0.13µm</td>
<td>0.18µm</td>
<td>0.6µm</td>
<td>0.18µm</td>
<td>0.18µm</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>2.5V</td>
<td>1.8V</td>
<td>3.3V</td>
<td>1.8V</td>
<td>1.8V</td>
</tr>
<tr>
<td>RF frequency</td>
<td>2.4GHz</td>
<td>1.22GHz</td>
<td>2.4GHz</td>
<td>5.25GHz</td>
<td>2.4GHz</td>
</tr>
<tr>
<td>IF frequency</td>
<td>7MHz</td>
<td>-</td>
<td>-</td>
<td>1GHz</td>
<td>36.125MHz</td>
</tr>
<tr>
<td>IRR</td>
<td>61dB</td>
<td>58dB</td>
<td>60dB</td>
<td>55dB</td>
<td>35dB</td>
</tr>
<tr>
<td>NF</td>
<td>25dB</td>
<td>20dB</td>
<td>7.2dB</td>
<td>7dB</td>
<td>10dB</td>
</tr>
<tr>
<td></td>
<td>(sans LNA)</td>
<td>(sans LNA)</td>
<td>(avec LNA)</td>
<td>(avec LNA)</td>
<td></td>
</tr>
<tr>
<td>IIP3</td>
<td>14dB</td>
<td>-</td>
<td>-3.4dBm</td>
<td>2.5dBm</td>
<td>-15dBm</td>
</tr>
<tr>
<td>Consumption</td>
<td>12.2mA</td>
<td>6.11mA</td>
<td>10.6mA</td>
<td>23.33mA</td>
<td>5mA</td>
</tr>
<tr>
<td>Area</td>
<td>0.96mm²</td>
<td>1.57mm²</td>
<td>3.18mm²</td>
<td>4mm²</td>
<td>0.5mm²</td>
</tr>
</tbody>
</table>
Conclusion

- **Context**: Growth of wireless communication
- **Objective**: Increasing the IRR & the matching
- **Design of an RF front-end receiver**
 - Double-quadrature architecture
 - PPF (optimal components configuration, tunable feature)
 - Switch mixers (high linearity with structure of magnitude matching control)
- **Obtained performances (PLS)**
 - High image rejection (≈ 61dB)
 - High linearity
 - Good immunity to mismatch
Thank You For Your Attention

fayrouz.haddad@im2np.fr
References

